GEOPHYSICAL REPORT

Induced Polarization and Magnetic Surveys

LOBO PROJECT
Latitude 13°39’N, Longitude 121°14’W

Luzon, Philippines

MRL Gold Phils. Inc.

Vancouver, B.C.
Canada

IP Survey by
McPhar Geophysics

Report by
S. J. V. CONSULTANTS LTD.

E. Trent Pezzot, Geophysicist.

February 25, 2005
TABLE OF CONTENTS

1 **SUMMARY** .. 1

2 **INTRODUCTION** .. 2

3 **FIELD SURVEYS** .. 2

4 **DATA PRESENTATION** .. 2

 4.1 **IP Data** ... 3

 4.1.1 IP Pseudosections .. 3

 4.1.2 IP Inverted Depthsections ... 3

 4.1.3 IP Interpreted Plan Maps .. 3

 4.1.4 3D Perspective Viewing .. 3

 4.2 **Mag Data** .. 4

 4.2.1 Stacked Profile Maps .. 4

 4.2.2 False Colour Contour Maps .. 4

 4.3 **Compilation Plan Map** ... 4

5 **GEOPHYSICAL TECHNIQUES** ... 4

 5.1 **IP Method** .. 4

 5.2 **Inversion Programs** .. 5

 5.3 **Magnetic Survey Method** .. 6

6 **DISCUSSION OF RESULTS AND INTERPRETATION** .. 6

 6.1 **Induced Polarization** .. 8

 6.2 **Magnetic Survey** ... 15

7 **CONCLUSIONS AND RECOMMENDATIONS** .. 17

8 **APPENDIX 1 – STATEMENT OF QUALIFICATIONS – E. TRENT PEZZOT** .. 19

9 **APPENDIX 2: IP PSEUDOSECTION & INTERPRETED DEPTHSECTIONS** 20

10 **APPENDIX 3: STACKED DEPTHSECTIONS** ... 63

11 **APPENDIX 4: INTERPRETED IP PLAN MAPS** .. 72

12 **APPENDIX 5: MAGNETIC MAPS** ... 87
List of Plates:- These maps are plotted at a scale of 1:10000 and are located in map pockets at the back of the report.

<table>
<thead>
<tr>
<th>Plate G1</th>
<th>Interpreted Resistivity 150m Depth False Colour Contour Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate G2</td>
<td>Interpreted Chargeability 300m Depth False Colour Contour Map</td>
</tr>
<tr>
<td>Plate G3</td>
<td>Relative Magnetic Field Intensity False Colour Contour Map Upward continued to 25 metres</td>
</tr>
<tr>
<td>Plate G4</td>
<td>Compilation Map Geology - Geophysics</td>
</tr>
</tbody>
</table>

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com
1 SUMMARY

Induced polarization and magnetic surveys were completed across MRL Gold Phils. Inc.s. Lobo project in the Philippines by McPhar Geophysics from October, 2004 to January, 2005. The data was forwarded to S.J.V. Consultants Ltd. for processing and interpretation.

Previous work on the Lobo project has outlined 5 to 7 km of northeast-trending epithermal vein/breccia trends. Mineralization along these trends occurs as both low-sulphidation (gold) and high-sulphidation (copper-silver) ore shoots. Extensive areas of silica cap have been mapped. These might represent the un-eroded tops of epithermal or porphyry mineralization and have high potential for mineralization beneath.

The magnetic data is a useful mapping tool, outlining both lithological and structural trends. A previous aeromagnetic survey (1996) outlined a cluster of seven anomalies at Lobo which were interpreted as possible intrusives. The recent ground survey has detailed the area, confirming the airborne results and detailing several magnetic bodies that might be associated with buried porphyry systems. The overall fabric of the magnetic responses reflect the easterly to northeasterly strike of the epithermal trends. In addition, there are magnetic indications of a major, northerly trending structural break through the centre of the property and several smaller, subparallel breaks.

The IP survey was configured to search for large, buried porphyry targets. Two large anomalies consisting of a horizontal, near surface high resistivity layer (silica cap) overlying high chargeability zones (disseminated sulphides) were mapped across multiple survey lines and are considered high priority targets. Several isolated anomalies exhibiting similar characteristics were also detected that warrant further investigation.

While the IP survey was not configured to map the epithermal, vein/breccia, oreshoot targets, the response over these trends conforms to the geological models. The IP data suggests these oreshoots occur within a steep, northwesterly dipping layer of low resistivity and low chargeability material.
INTRODUCTION

Induced polarization (IP) and magnetometer (mag) surveys were completed across portions of MRL Gold Phils. Inc.’s Lobo project in Batangas province, southern Luzon, Philippines. The primary intention of these surveys was to assist in the exploration for copper-gold porphyry deposits.

The first instalment of IP and magnetic data was forwarded to S.J.V. Consultants Ltd. in November, 2004 and additional data was sent in January, 2005. Details concerning the logistics of the field surveys are not included in this report.

This report is meant to be an addendum to a more complete report, and thus location maps, comprehensive description of geology and previous exploration work are treated only briefly, or not included.

FIELD SURVEYS

The IP surveying was conducted by McPhar Geophysics, from approximately October 14 to December 22, 2004 using a Scintrex IPR-12 time domain system, configured in a conventional 2-D dipole-dipole array. The potential electrode spacing was set to 100 metres and separation factors of n=1 to 5 were used. Surveys were completed on 20 lines, from 8200N to 11800N and totalled approximately 42.3 line kilometres.

Magnetic surveying was conducted in October and November, 2004. Data was gathered using a GEM systems GSM-19 proton precession magnetometer, on generally the same lines as used for the IP survey, at a nominal station spacing of 12.5 metres.

Grid location information was provided by MRL as WGS 84, Zone 51N UTM coordinates and elevation data as meters above sea level in an excel spreadsheet.

DATA PRESENTATION

The geophysical data from this survey are displayed in several formats, as indicated below. All plan maps are registered to the WGS 84, Zone 51N, UTM grid coordinate system. Pseudosection and interpreted depthsections are registered to the local grid coordinates. Page sized plots of these maps are included in the appendices of this report. Selected plots have been generated as larger, scaled drawings and are included in map pockets at the back of this report.
4.1 IP Data

4.1.1 IP Pseudosections

Standard pseudosections of apparent resistivity and chargeability are presented in false colour format in Appendix 2. These displays have been corrected for topography.

4.1.2 IP Inverted Depthsections

False colour format depthsections of the interpreted (inverted) resistivity and chargeability are presented along with the pseudosections in two formats in Appendix 2. One format uses a colour distribution customized for each line. This display is useful in highlighting subtle trends on each line. The other format uses a colour distribution that has been standardized for all lines. This display is more useful when comparing the responses and trends between lines.

These depthsections are presented in a line stacked format in Appendix 3 to allow for an easy line to line correlation of the mapped trends.

1:5,000 scale plots of these depthsections are presented in map pockets at the back of this report.

4.1.3 IP Interpreted Plan Maps

False colour contour format plan maps have been created for the interpreted resistivity and chargeability data for depths of 100m to 400m below ground surface. Page sized plots of these results are included as Appendix 4 of this report. Larger scaled drawings for the inverted resistivity at 150m depth and the inverted chargeability at 250m depth are presented in pockets at the back of this report.

4.1.4 3D Perspective Viewing

The 2-D IP inversion results have been merged into a 3-D block for display purposes. This block can be examined in a number of 3-D viewing programs that allow the user to rotate and dissect the block in virtually any manner required. This type of display is useful for illustrating the spatial relationship between the various responses. Selected snapshots from these viewing programs are included as images in the text of this
report to illustrate some of the described responses. Additionally, a viewing program and
the required data files have been provided to MRL on CD.

4.2 **Mag Data**

Page sized plots of the magnetic data are presented in Appendix 5.

4.2.1 **Stacked Profile Maps**

This display draws profiles of the magnetic data on a plan map, using the survey grid
lines as baselines. This display is useful for showing the character of the magnetic
responses across the area.

4.2.2 **False Colour Contour Maps**

This display uses colour to render the magnetic amplitude variations across the grid.
This is a useful technique for illustrating magnetic trends. Plan maps showing the effects
of various filters (upward continuation and reduced to the pole) on the magnetic data are
included.

4.3 **Compilation Plan Map**

A Compilation Plan Map, based on the IP and the ground magnetic data, was drawn
to illustrate the geophysical interpretation and plotted over a geological basemap
provided by the client. This map is included as Plate G-4 in a map pocket at the back of
this report and as a page sized image in the text of this report..

5 **GEOPHYSICAL TECHNIQUES**

5.1 **IP Method**

The time domain IP technique energizes the ground surface with an alternating
square wave pulse via a pair of current electrodes. On most surveys, such as this one, the
IP/Resistivity measurements are made on a regular grid of stations along survey lines.

After the transmitter (Tx) pulse has been transmitted into the ground via the current
electrodes, the IP effect is measured as a time diminishing voltage at the receiver
electrodes. The IP effect is a measure of the amount of IP polarizable materials in the
subsurface rock. Under ideal circumstances, IP chargeability responses are a measure of the amount of disseminated metallic sulfides in the subsurface rocks.

Unfortunately, there are other rock materials that give rise to IP effects, including some graphitic rocks, clays and some metamorphic rocks (serpentinite for example) so, that from a geological point of view, IP responses are almost never uniquely interpretable. Because of the non-uniqueness of geophysical measurements it is always prudent to incorporate other data sets to assist in interpretation.

Also, from the IP measurements the apparent (bulk) resistivity of the ground is calculated from the input current and the measured primary voltage.

IP/Resistivity measurements are generally considered to be repeatable within about five percent. However, they will exceed that if field conditions change due to variable water content or variable electrode contact.

IP/Resistivity measurements are influenced, to a large degree, by the rock materials nearest the surface (or, more precisely, nearest the measuring electrodes), and the interpretation of the traditional pseudosection presentation of IP data in the past have often been uncertain. This is because stronger responses that are located near surface could mask a weaker one that is located at depth.

5.2 Inversion Programs

“Inversion” programs have recently become available that allow a more definitive interpretation, although the process remains subjective.

The purpose of the inversion process is to convert surface IP/Resistivity measurements into a realistic “Interpreted Depth Section.” The use of the inversion routine is a subjective one because the input into the inversion routine calls for a number of user selectable variables whose adjustment can greatly influence the output. The output from the inversion routines do assist in providing a more reliable interpretation of IP/Resistivity data, however, they are relatively new to the exploration industry and are, to some degree, still in the experimental stage.

The inversion programs are generally applied iteratively to, 1) evaluate the output with regard to what is geologically known, 2) to estimate the depth of detection, and 3) to determine the viability of specific measurements.

The Inversion Program (DCINV2D) used by the SJ Geophysical Group was developed by a consortium of major mining companies under the auspices of the UBC-
Geophysical Inversion Facility. It solves two inverse problems. The DC potentials are first inverted to recover the spatial distribution of electrical resistivities, and, secondly, the chargeability data (IP) are inverted to recover the spatial distribution of IP polarizable particles in the rocks.

The Interpreted Depth Section maps represent the cross sectional distribution of polarizable materials, in the case of IP effect, and the cross sectional distribution of the apparent resistivities, in the case of the resistivity parameter.

5.3 Magnetic Survey Method

Total Magnetic Intensity measurements are taken along survey traverses (normally on a regular grid) and are used to identify metallic mineralization that is related to magnetic materials (normally magnetite and/or pyrrhotite). Magnetic data are also used as a mapping tool to distinguish rock types, identify faults, bedding, structure and alteration zones.

The magnetic data was corrected for diurnal variations by the geophysical contractor and provided as a digital data file. In addition to the stacked profile and colour contour displays of the total field data, the magnetic data has been processed through upward continuation filters. This procedure acts as a low pass filter and effectively smooths the data to allow for a clearer display of the regional magnetic character. Colour contour maps are included in Appendix 4 for upward continuations to 25m and 50m.

The magnetic data has also been processed through a reduction to the pole filter. This filter modifies the observed responses to simulate the responses that would have been recorded had the survey been completed at the magnetic north pole, where the earth’s magnetic field is inclined vertically.

6 Discussion of Results and Interpretation

A survey grid, comprised of northwest-southeast oriented lines of various lengths, normally spaced at 200 metre intervals was established across the project area. Magnetic and IP surveying were completed across different sections of the grid as shown on the geological base map below (Figure 1).

The most contiguous block of IP surveying was centred over a large area mapped as silica cap located north of the base camp and sandwiched between the Pica prospect area and Sampson Trend. Several of these lines extend to the SE, providing reconnaissance
views of the Sampson and Camo Trends. A secondary block of IP surveying covers a large area mapped as conglomerates that lies to the SW of the Sampson and Camo Trends. This area is referred to as the Signal Prospect.

Figure 1: Lobo Project Area – Geological Base Map – Geophysical Survey Grid.

There are two types of targets proposed for this project: porphyry and epithermal mineralization. These two types of deposits are often in close proximity to each other due to the relatively thin oceanic crust in the region. Evidence of porphyry systems occur as silica caps, mapped in three locations within the project area. There are several NE trending zones of interest that are comprised of epithermal vein/breccia oreshoots. It has
been postulated that these oreshoots might come off of buried porphyry systems. Magnetic evidence supports interpretation of buried intrusions in the area.

6.1 Induced Polarization

The data quality is relatively good for the closer electrode spacings (n = 1-3) but deteriorates dramatically at the wider spacings where the measured Vp is typically less than 1 mV. This low amplitude signal is also apparent by “poor quality” decay curves and there are numerous instances where the later time channels are dominated by noise. The chargeabilities have been re-calculated based on earlier time channels where noise levels were more manageable. This has the effect of increasing the chargeabilities above the averages that were calculated in the IP receiver and posted by the contractor.

The IP technique measures two physical properties of the ground: chargeability and resistivity. In this instance, the IP survey was configured to search for a buried porphyry system. The primary targets are high chargeabilities associated with metallic mineralization (sulphides) and the high resistivities associated with a silica cap. Secondary targets are background variations of both parameters that might indicate geological structures and/or lithology.

Due to the width of the IP dipole array, there is little or no resolution of the geophysical responses in the near surface (top 100 metres). Inversion results suggest some scattered surface features but these are considered unreliable.

There are two areas where the IP responses give strong indications of a buried porphyry system. The larger of these is associated with the geologically mapped silica cap, north of the base camp. This anomaly is referred to as the Pica anomaly in this report. The other is located north of the silica cap at the Calumpang prospect. There are indications, in both the resistivity and magnetic data that these two targets are separated by a NNE trending structure (fault).

Figures 2 and 3 are colour plan maps of the resistivity and chargeability inversions that have been annotated to illustrate the interpreted trends described below.
Figure 2 – Interpreted Resistivity – 150m depth
The IP responses across lines 10600N to 11200N suggest presence of a buried silica cap and high chargeability zone beneath that cap, immediately north of the Calumpang prospect. The silica cap appears to plunge to the NE. It likely outcrops (or comes very close to surface) near line 10600N and plunges to ~100m depth by line 11200N. This unit may be up to 600m long and 500m wide (but more likely is smaller). There is a pronounced increase in the chargeability below the cap, along its’ northwestern flank. These responses are most clearly apparent on Line 10800N, shown below as figures 4a and 4b.
The IP survey corroborates the geological mapping that shows large silica cap and possible porphyry system covering an area north of the base camp between the Pica prospect and the Sampson Trend. It shows scattered resistivity highs in the near surface across the geologically defined unit and a more pronounced resistive zone buried (~100m deep) at the northwest edge of the geologically defined unit. This could be an indication that the silica cap is plunging at a shallow angle to the northwest. It also suggests there may be a second subparallel and smaller resistivity unit buried to the NW.

The chargeability component maps a high chargeability unit, below the silica cap at 250 metres depth. In some areas this chargeability unit appears to extend upwards into the high resistivity zone. While elevated chargeabilities are mapped over a large area, there appears to be three discrete zones of very high chargeabilities within the broader zone: two are located along the northwestern and northeastern edges of the geologically outlined silica cap and the third is associated with the geophysically delineated buried
silica unit to the northwest. This type of zonation of the chargeability response is not uncommon and could be reflecting changes in the amount (or type) of sulphides.

These geophysical responses are observed over a 1 kilometre strike length, from line 9000N to 10000N. Interpreted depthsections for line 10000N are presented below as figures 5a and 5b to illustrate these responses.

The conglomerate zone (Signal Prospect area) in the southwestern portion of the grids was tested with 5 IP lines, 8200N to 8800N and 9200N. These lines all exhibited similar responses, suggesting a fairly uniform geological environment. The most significant geophysical response is noted in the resistivity component which maps a flat-lying, high resistivity lens, relatively thin at the edges but up to 100-150m thick near the centre. This layer is up to 800 metres across and is observed on lines 8800N to 8200N. The zone is also mapped on line 9200N, near the northeastern edge of the conglomerate unit but is more broken up in this area. The southeastern edge of this resistive unit is consistently mapped as a 45° NW dipping contact.

There is a distinct increase in the chargeability values below the resistive horizon. While they are elevated, these chargeabilities are still significantly lower than those mapped at the Pica and Calumpang anomalies. The strongest concentrations of chargeability material appear to be located beneath the northernwestern half of the resistive zone. These geophysical signatures are open to the southwest.
Two IP lines (9400N and 9600N) were extended about 2 km NW of the Pica Trend. Geological mapping suggests this area as being covered by andesites. There is weak evidence, most notably on line 9600N, of a near surface high resistivity layer at the NW ends of these lines. There is also a weak chargeability anomaly that appears to be associated with the SE edge of this resistive unit. These responses are only partially defined but should be considered as potential exploration targets.

A number of the IP lines were extended to the southeast and cross both the Sampson and Camo trends. Both these trends are described by MRL as steep, northwesterly dipping oreshoots. Neither of these trends is clearly delineated by the IP survey. This is likely due, at least in part, by the wide electrode spacings and resulting lack of resolution of the shallow responses. All 4 survey lines that cross the Camo Trend suggest it is coincident with a moderate (60° NW) dipping zone of low resistivity and low chargeability. The survey lines crossing the Sampson Trend show a similar response however suggest this unit dips more steeply (on the order of 75° to the NW).

Geological mapping indicates a third silica cap area located in the southeastern corner of the grid (lines 10200N to 10800N, station 10300E). There are indications of increased resistivity on strike with this unit on line 11100N. However, this response is mapped near the end of the survey line and is not fully resolved by the inversion. Additional surveying in this area would be required to confirm the resistivity signature to this geologically mapped unit.

The 2-D inversion depthsections have been merged into a 3-D model in order to show the spatial relationship between the features described above. A couple of viewing programs have been provided which allow the user to view the 3-D models from different perspectives. A couple of snapshots from these viewers are presented below.
Figure 6: Meshtools3D perspective elevated view from northwest of chargeability inversion.

Figure 7: Paraview (Viz5D) perspective elevated view from north. Red = high resistivity zone (>55 ohm-m) probable silica cap Green = High chargeability (>25 msec).
6.2 Magnetic Survey

Ground magnetic data was gathered at 12.5 metre station increments on 23 survey lines as shown on Figure 1. This survey was completed and interpreted prior to the IP survey. While these results have been reviewed and correlated to the IP data, a complete interpretation of the magnetic data was not requested.

The magnetic data is included with this report in various plotting formats in Appendix 5. A colour contour plot of the total magnetic field (upward continued to 25 metres) is provided as figure 8 below. This image has been annotated with the MRL interpretation and several other trends as discussed below.

MRL has interpreted several areas of total magnetic field lows as reflecting high magnetic susceptibility bodies and possible porphyry copper-gold targets. One of the larger of these responses coincides with the IP delineated porphyry target north of the Calumpang prospect. A much smaller magnetic response is associated with the larger IP target north of the base camp.

In addition to these responses, there are two other types of magnetic trends that warrant further attention. First, there are several easterly to northerly arcuate lineations that roughly coincide with or parallel some of the geologically mapped epithermal trends. These magnetic trends might be delineating structural breaks or geological contacts related to these exploration targets. Second, there are indications of a major structural break trending northerly through the centre of the survey area. While northerly trending magnetic features are not clearly delineated at these low latitudes, they sometimes appear as subtle breaks in easterly trends or as a series of monopole and/or dipole anomalies. This apparent magnetic feature coincides with a subtle lineation in the resistivity data. As in this situation, these northerly oriented trends can sometimes be enhanced with the application of a reduction to the pole filter (Appendix 5). This rtp filter display has also enhanced several smaller, subparallel magnetic trends that are not as obvious in the total field displays.
Figure 8: Total Magnetic Field Intensity (upward continued to 25m) with interpretation
7 CONCLUSIONS AND RECOMMENDATIONS

The induced polarization survey has outlined two anomalies that can be interpreted as reflections of a buried porphyry target. These anomalies consist of a flat-lying resistive layer (possible silica cap) overlying a high chargeability body (possible sulphides). Coincident magnetic responses support this interpretation. In both instances, geological mapping has identified silica cap materials either directly above or in the vicinity of the IP defined anomalies. High chargeability materials are mapped over fairly broad areas but they appear to exhibit the highest chargeabilities and are thicker beneath the northern flanks of the resistivity defined silica caps. It is possible that the chargeabilities are mapping zones or facies within a porphyry system and as such, the higher chargeability responses may not necessarily be the primary exploration target.

Both of these porphyry targets will eventually require fence drilling across the broad geophysical signatures to be properly evaluated. Initial holes should be spotted to intersect the centres of the highest chargeability targets as outlined on the interpreted depthsections in the appendicies, most of which are on the order of 250 metres depth or more beneath the northern flanks of the high resistivity layer. These holes will have the best chance of intersecting the source of the chargeability anomalies and identifying the type and style of mineralization. There is no clear indication of the dip of these targets although the IP interpretation suggests the overlying materials are dipping to grid north. Geological information should be reviewed to determine the optimum angle for the drilling.

The initial hole recommended to test the Calumpang IP target should be spotted with the intention of intersecting the high chargeability anomaly located at 325m depth below line 10800N, station 8125E.

There are three high chargeability centres recommended for initial drill testing on the Pica IP anomaly.

1. Line 9600N, station 7875E, 225m depth.
2. Line 9600N, station 8450E, 250m depth below surface
3. Line 10000N, station 8575E, 225m depth below surface (Note: this target may be dipping to the southeast).
Even though the Signal prospect area is considered open to the southwest, it also warrants drill testing at this time. The IP survey suggests the highest concentrations of sulphides will be located under the northwestern section of the high resistivity surface layer. An initial drill target is recommended to test the local chargeability high at 200m depth below line 8600N, station 9625E.

Respectfully submitted,

Per S.J.V. Consultants Ltd.

E. Trent Pezzot, B.Sc., P.Geo,

Geophysics, Geology
APPENDIX 1 – STATEMENT OF QUALIFICATIONS – E. TRENT PEZZOT

I, E. Trent Pezzot, of the city of Surrey, Province of British Columbia, hereby certify that:

1) I graduated from the University of British Columbia in 1974 with a B.Sc. degree in the combined Honours Geology and Geophysics program.

2) I have practised my profession continuously from that date.

3) I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.

4) I have no interest in M.R.L. Phils. Ltd. or any of their subsidiaries or related companies, nor do I expect to receive any.

Signed by: _________________________

E. Trent Pezzot, B.Sc., P.Geo.

Geophysicist/Geologist
9 Appendix 2: IP Pseudosection & Interpreted Depthsections

10 Appendix 2: IP Pseudosection and Interpreted Depthsections
10.1 **Line 11800N Resistivity**

Pseudosection

![Normalized Potential - Line 11800 N: Dipole-Dipole: 27 data Observed Apparent Resistivity](image)

Inversion Depthsection

![Resistivity Model](image)
10.2 Line 11800N Chargeability

Pseudosection

Inversion Depthsection

Chargeability Model

Chargeability Model
10.3 Line 11600N Resistivity

Pseudosection

Inversion Depthsection
10.4 Line 11600N Chargeability

Pseudosection

Inversion Depthsection
10.5 Line 11400N Resistivity

Pseudosection

Normalized Potential - Line 11400 N : Dipole-Dipole : 113 data
Observed Apparent Resistivity

Inversion Depthsection

Resistivity Model

Resistivity Model
10.6 Line 11400N Chargeability

Pseudosection

Inversion Depthsection
Line 11200N Resistivity
Pseudosection

Normalized Potential - Line 11200 N: Dipole-Dipole: 58 data
Observed Apparent Resistivity

Inversion Depthsection

Resistivity Model

Resistivity Model

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com
10.7 Line 11200N Chargeability

Pseudosection

Chargeability Model

Inversion Depthsection

Chargeability Model
10.8 Line 11100N Resistivity

Pseudosection

Normalized Potential - Line 11100 N : Dipole-Dipole : 30 data
Observed Apparent Resistivity

Inversion Depthsection
10.9 Line 11100N Chargeability

Pseudosection

Inversion Depthsection

Chargeability Model
10.10 Line 10900N Resistivity

Pseudosection

Inversion Depthsection
10.11 Line 10900N Chargeability

Pseudosection

Inversion Depthsection

Chargeability Model

Chargeability Model
10.12 Line 10800N Resistivity

Pseudosection

Inversion Depthsection
10.13 Line 10800N Chargeability

Pseudosection

Inversion Depthsection
10.14 Line 10600N Resistivity

Pseudosection

Inversion Depthsection
10.15 Line 10600N Chargeability

Pseudosection

Inversion Depthsection

Chargeability Model

Chargeability Model
10.16 Line 10400N Resistivity

Pseudosection

Inversion Depthsection

Resistivity Model

Resistivity Model
10.17 Line 10400N Chargeability

Pseudosection

Inversion Depthsection
10.18 Line 10200N Resistivity

Pseudosection

Inversion Depthsection

Resistivity Model

Resistivity Model
10.19 Line 10200N Chargeability

Pseudosection

Inversion Depthsection
10.20 **Line 10000N Resistivity**

Pseudosection

Inversion Depthsection
10.21 Line 10000N Chargeability

Pseudosection

Inversion Depthsection
10.22 Line 9800N Resistivity

Pseudosection

Normalized Potential - Line 9800 N: Dipole-Dipole; 78 data
Observed Apparent Resistivity

Inversion Depthsection

Resistivity Model

Resistivity Model
10.23 Line 9800N Chargeability

Pseudosection

Inversion Depthsection

Chargeability Model

Chargeability Model
10.24 Line 9600N Resistivity

Pseudosection

Normalized Potential - Line 9600N : Dipole-Dipole : 111 data
Observed Apparent Resistivity

Inversion Depthsection

Resistivity Model

Resistivity Model
10.25 Line 9600N Chargeability

Pseudosection

Inversion Depthsection

Chargeability Model

Chargeability Model
10.26 Line 9400N Resistivity

Pseudosection

Inversion Depthsection

Resistivity Model

Resistivity Model
10.27 Line 9400N Chargeability

Pseudosection

GN1 Chargeability - Line 9400 N : Dipole-Dipole : 114 data
Observed Apparent Chargeability

Inversion Depthsection

Chargeability Model

Chargeability Model

10.28 Line 9200N Resistivity

Normalized Potential - Line 9200 N : Dipole-Dipole : 92 data
Observed Apparent Resistivity

Inversion Depth Section

Resistivity Model

Resistivity Model
10.29 Line 9200N Chargeability

Pseudosection

GPI Chargeability - Line 9200 N: Dipole-Dipole : 92 data
Observed Apparent Chargeability

Inversion Depth Section

Chargeability Model

Chargeability Model

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada
tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com
10.30 Line 9000N (West Segment) Resistivity

Pseudosection

Normalized Potential - Line 9000 N : Dipole-Dipole : 72 data
Observed Apparent Resistivity

Inversion Depth Section

Resistivity Model

Resistivity Model
10.31 Line 9000N (West Segment) Chargeability

Pseudosection

Inversion Depth Section
10.32 Line 9000N (East Segment) Resistivity

Pseudosection

Inversion Depth Section

10.33
Line 9000N (East Segment) Chargeability

Pseudosection

Inversion Depth Section

Chargeability Model

Chargeability Model
10.34 Line 8800N Resistivity

Pseudosection

Inversion Depthsection
10.35 Line 8800N Chargeability

Pseudosection

Inversion Depthsection

Chargeability Model

Chargeability Model
10.36 Line 8600N Resistivity

Pseudosection

Inversion Depthsection

Resistivity Model

Resistivity Model
10.37 Line 8600N Chargeability

Pseudosection

Inversion Depthsection

Chargeability Model

Chargeability Model
10.38 Line 8400N Resistivity

Pseudosection

Normalized Potential - Line 8400 N: Dipole-Dipole : 58 data
Observed Apparent Resistivity

Inversion Depthsection

Resistivity Model

Resistivity Model
10.39 Line 8400N Chargeability

Pseudosection

Inversion Depthsection

Chargeability Model

Chargeability Model
10.40 Line 8200N Resistivity

Pseudosection

Inversion Depthsection

10.41
Line 8200N Chargeability

Pseudosection

Inversion Depthsection
APPENDIX 3: STACKED DEPTHSECTIONS

A copy of appendix 3 may be obtained by contacting Mindoro’s office:

MINDORO RESOURCES LTD.
Suite 103, 10471 – 178 St.
Edmonton, Alberta T5S 1R5

Telephone: 1-780-413-8187
Fax: 1-780-426-2716
Email: mindoro@mindoro.com
APPENDIX 4: INTERPRETED IP PLAN MAPS

<table>
<thead>
<tr>
<th>Inverted Resistivity – Depth</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>50m Depth</td>
<td>73</td>
</tr>
<tr>
<td>100m Depth</td>
<td>74</td>
</tr>
<tr>
<td>150m Depth</td>
<td>75</td>
</tr>
<tr>
<td>200m Depth</td>
<td>76</td>
</tr>
<tr>
<td>250m Depth</td>
<td>77</td>
</tr>
<tr>
<td>300m Depth</td>
<td>78</td>
</tr>
<tr>
<td>350m Depth</td>
<td>79</td>
</tr>
<tr>
<td>400m Depth</td>
<td>80</td>
</tr>
<tr>
<td>Inverted Chargeability – Depth</td>
<td></td>
</tr>
<tr>
<td>50m Depth</td>
<td>81</td>
</tr>
<tr>
<td>100m Depth</td>
<td>82</td>
</tr>
<tr>
<td>150m Depth</td>
<td>83</td>
</tr>
<tr>
<td>200m Depth</td>
<td>84</td>
</tr>
<tr>
<td>250m Depth</td>
<td>85</td>
</tr>
<tr>
<td>300m Depth</td>
<td>86</td>
</tr>
<tr>
<td>350m Depth</td>
<td>87</td>
</tr>
<tr>
<td>400m Depth</td>
<td>88</td>
</tr>
</tbody>
</table>
Interpreted Resistivity – 100m below surface
Interpreted Resistivity – 150m below surface
Interpreted Resistivity – 200m below surface
Interpreted Resistivity – 250m below surface
Interpreted Resistivity – 300m below surface
Interpreted Resistivity – 350m below surface
Interpreted Resistivity – 400m below surface
Interpreted Chargeability – 100m below surface
Interpreted Chargeability – 150m below surface
Interpreted Chargeability – 200m below surface
Interpreted Chargeability – 250m below surface
Interpreted Chargeability – 300m below surface
Interpreted Chargeability – 350m below surface
Interpreted Chargeability – 400m below surface
13 **APPENDIX 5: MAGNETIC MAPS**

<table>
<thead>
<tr>
<th>Magnetic Field Intensity</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Magnetic Field Intensity- Stacked Profile</td>
<td>88</td>
</tr>
<tr>
<td>Total Magnetic Field Intensity- Colour Contour</td>
<td>89</td>
</tr>
<tr>
<td>Relative Magnetic Field Intensity – Upward continued 25m</td>
<td>90</td>
</tr>
<tr>
<td>Relative Magnetic Field Intensity – Upward continued 50m</td>
<td>91</td>
</tr>
<tr>
<td>Reduced to the Pole Magnetic Intensity – Upward continued 25m</td>
<td>92</td>
</tr>
<tr>
<td>Reduced to the Pole Magnetic Intensity – Upward continued 50m</td>
<td>93</td>
</tr>
</tbody>
</table>

A copy of appendix 5 may be obtained by contacting Mindoro’s office:

MINDORO RESOURCES LTD.
Suite 103, 10471 – 178 St.
Edmonton, Alberta T5S 1R5

Telephone: 1-780-413-8187
Fax: 1-780-426-2716
Email: mindoro@mindoro.com